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Quantum-enhanced measurements

 Weak forces can be measured with ultra-sensitive precision
using judiciously chosen quantum states

Quantum metrology has recently acquired  practical relevance

Practical uses: gravimetry

Fundamental science:

Small force measurements (gravity, Casimir forces, etc)
Quantum computation, quantum communication, quantum lithography

For a review, see V. Giovannetti, and S. Lloyd, L. Maccone, Science 306, 1330 (2004)



Quantum states in phase space

 Classical mechanics

classical phase-space distribution (Liouville)

 States represented by points/distributions in phase-space:

 States represented by a wave function
or  by a density matrix

 Quantum mechanics

 Wigner quantum phase-space distribution:

 Quasi-probability: can be negative!

 Signature of quantum effects (interferences)

 Alternatively, they can be represented in phase-space



Measurements of the Wigner function

 Mode of the electromagnetic field  Squeezed  Vacuum

 Motional quantum state of a trapped ion

 One photon Wigner function

Smithey et al, PRL 70, 1244 (1993)
Breitenbach et al, Nature 387, 471 (1997)

Wineland group - PRL 77, 4281 (1996)

Lvovsky et al,  PRL 87, 050402 (2001)



Measuring small displacements and
rotations - standard quantum limit

 System is prepared in a known input state         which experiences a
small displacement, transforming       into

 Goal:  to infer     with minimum error from measurements performed on
the displaced state

 Using probes prepared in quasi-classical states, such as coherent
states of light, the precision is at the standard quantum limit (SQL)

 Displacements:

 Rotations:

This is the naïve guess from Heisenberg uncertainty principle



Heisenberg limit

 Using probes prepared in quantum correlated states, such as superposition
and entangled states, the precision can be higher that SQL, and reach the
ultimate limit allowed by quantum mechanics Heisenberg limit (HL)

 Displacements:

 Rotations:
improvement over SQL

The mean value of the uncertainty         is limited by the mean value of the energy

but

Heisenberg limit for
displacements

Example: free particle / harmonic oscillator



Heisenberg limit and
Sub-Planck phase-space structures

The HL is related to sub-Planck phase-space structures (interference)

Period of oscillations Sub-Planck area of structures

W.H. Zurek, Nature 412, 712 (2001)



Sub-shot noise measurements

 Sub-SQL precision has been obtained experimentally using internal
degrees of freedom of photons and ions:

 polarization entanglement with a few photons

Spin entanglement with a few ions

• Zeilinger group, Nature 429, 158 (2004)

• Steinberg group, Nature 429, 161 (2004)

• Bouwmeester group, PRL 94, 090502 (2005)

• Wineland group, Science 304, 1476 (2004)

 Sub-SQL has not been obtained yet using external (motional) degrees
of freedom

Circular coherent states:

Motional cat state
Motional compass state



Effects of small perturbations

 

Rotation

Displacement

Wigner function of
unperturbed state

Wigner function of
perturbed state

Product of
Wigner functions

States can be
distinguished

Minimal rotation

Minimal displacem’t



General measurement strategy

In order to measure the sub-Planck structures,
we couple the oscillator to a two-level system
(e.g. atomic electronic states, hyperfine levels)

Evolution      must be implemented so that

Loschmidt echo in
quantum systems!

Note that:

(perturbation)



Cavity QED: two main ingredients

Circular Rydberg atoms
Large circular (classical) orbits

Strong coupling to microwaves

Long radiative lifetimes (30 ms)

Easy state selective detection

Quasi two-level systems

n = 51

n = 50

Superconducting mirror cavity
Large field per photon

Long photon life time (0.1 sec)

Easy tunability

Possibility to prepare coherent states with controlled
mean photon number



Cavity QED: EM-field cat states
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Field - atom interaction (Jaynes-Cummings Hamiltonian)

“1-qubit” gates, e.g.



Resonant interaction

 Frequency of field = frequency of two-level system

perturbation

“Time reversal”

Final state:



Resonant interaction (cont’d)

 How to invert motion?

|e〉

|i〉
ωcG. Morigi et al, PRA 65, 040102(R) (2002)

  Apply percussive       pulse to state

  Effect on state:

  Effect on JC Hamiltonian:
|g〉

 How to apply perturbation?

 Rotation perturbation: percussive motion of one of the cavity mirrors

 Displacement perturbation: injection of small coherent field into the cavity

Heisenberg-limited
sensitivity to perturbations

 Heisenberg-limited measurement



Effects of decoherence

 Quantum system interacts with an external environment. This
interaction causes loss of coherence (decoherence)

 Quantum superpositions are destroyed

 Main obstacle for coherent quantum
dynamics (quantum metrology, etc.)

The main mechanism of decoherence in our proposal is
loss of photons from the cavity

This condition is within reach of present techniques in cavity QED

(ENS-Paris)



M=2 versus M=4 coherent states

 The sensitivity to perturbations of the M=2 states
gradually degrades as the direction of the perturbing
force moves away from the direction orthogonal to
the line joining the two coherent states

max

min

 Higher-order (M>2) circular coherent states do not
suffer from this limitation

Different proposals in quantum optics for M=4, involving
either conditional measurements or dispersive
interactions. Their problem is large interaction times.

 We propose to do quantum state engineering in ion traps to
generate the M=4 state on demand with short interaction times



Ion traps: basic excitation schemes

 Single trapped ion: the center-of-mass motion
along each spatial dimension can be described
by a quantum harmonic oscillator

 Laser-ion interaction: coupling between internal
(electronic) and external (motional) degrees of freedom

 The laser excitation can be done in several different ways, giving
rise to a large number of possible interaction Hamiltonians

Review: D. Liebfried et al, Rev. Mod. Phys. 75, 281 (2003)

 For our purposes, we will consider situations where motional
sidebands are spectroscopically well resolved, and the motion
along only one principal axis of the trap is effectively excited



First excitation scheme

 Raman excitation of a dipole-forbidden transition
on resonance to a given motional sideband

Lamb-Dicke parameter:

for co-propagating lasers

for counter-propagating lasers

Effective 1D excitation for



First excitation scheme (cont’d)

 Carrier resonance               and

Single qubit rotations

 Carrier resonance and larger

Conditional rotations



Second excitation scheme

 Raman excitation of one motional sideband
via the virtual excitation of a given electronic
transition

 First sideband (k=1) and small Lamb-Dicke parameter

Conditional displacements



Compass state via quantum gates

Experimental parameters [C. Monroe et al, Science 272, 1131 (1996)]

Raman Rabi frequency:

Lamb-Dicke parameter:

Time needed to generate the compass state:



Compass state via engineered Kerr
nonlinearity

Using two pairs of Raman lasers on carrier resonance, a Kerr-type
nonlinearity can be engineered

Key identity:

Experimental parameters (new ion traps)

Lamb-Dicke parameters of the two pairs of Raman lasers:

Raman Rabi frequencies:

Time needed to generate the compass state:



Motional decoherence

The main mechanism of decoherence in this ion trap proposal is
heating of the vibrational degree of freedom

• Typical measured heating times

• Estimation of decoherence time of a circular coherent state

Eg: for a vibrational compass state with

The decoherence time should be much larger than the total interaction time
for weak force detection (generation of compass state, application of
perturbation, and inversion of the dynamics)

Eg: for a displacement perturbation [Wineland et al, Nature 403, 269 (2000)]



Measurement of weak perturbations

Heisenberg-limited
sensitivity to perturbations

 Rotation perturbation: sudden change of the trapping frequency

 Displacement perturbation: sudden kick to the trap

 How to apply perturbation?

 Detection

Via shelving, the populations in        and       are measured, and then the
magnitude of the perturbation is inferred with Heisenberg-limited sensitivity



 Summary

 Sub-Planck phase-space structures of quantum states are the root for
the Heisenberg-limited sensitivity of such states to perturbations

 We proposed a general scheme to measure weak perturbations by
entangling a quantum oscillator with a two-level system, in such a way
that an M circular coherent state of the oscillator is created via the
coupled dynamics

 We described possible experimental implementations for cat states
(M=2), both in cavity QED and ion traps, and for compass states (M=4)
in ion traps. They are within reach of present AMO technology

• Phys. Rev. A 73, 023803 (2006)
• quant-ph/0608082, to appear in New Journal of Physics
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